|
Twitter
|
Facebook
|
Google+
|
VKontakte
|
LinkedIn
|
 
 
International Journal of Innovation and Scientific Research
ISSN: 2351-8014
 
 
Thursday 21 November 2024

About IJISR

News

Submission

Downloads

Archives

Custom Search

Contact

  • Contact us
  • Newsletter:

Connect with IJISR

   
 
 
 

Contribution of remote sensing and GIS to the mapping of land use units and its changes in the face of the flooding problem on the Plateau of Allada in Benin between 1986 and 2020


[ Contribution de la télédétection et d’un SIG à la cartographie des unités de l’occupation du sol et ses changements face au problème d’inondation sur le plateau d’Allada au Bénin entre 1986-2020 ]

Volume 65, Issue 2, March 2023, Pages 171–183

 Contribution of remote sensing and GIS to the mapping of land use units and its changes in the face of the flooding problem on the Plateau of Allada in Benin between 1986 and 2020

Kpoha Josiane Nadège1, Akokponhoue Houngnigbo Bertrand2, Orekan Vincent3, and N’guessan Bi Vami Hermann4

1 Department, Biodiversity and Environmental Expertise Laboratory, University of Abomey-Calavi, BP: 677 Abomey Calavi, Benin
2 International Chair in Mathematical Physics and Applications (CIPMA UNESCO Chair), University of Abomey-Calavi, 072 BP 50 Cotonou, Benin
3 Department, Biodiversity and Environmental Expertise Laboratory, University of Abomey-Calavi, BP: 677 Abomey Calavi, Benin
4 Laboratoire des Sciences et Techniques de l’Eau et de l’Environnement, UFR STRM, Université Felix Houphouët-Boigny, Côte d’Ivoire

Original language: French

Copyright © 2023 ISSR Journals. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Abstract


The objective of this study is to map the land cover units (LCU) of the Plateau of Allada from the supervised classification by the maximum likelihood method of Landsat multi-spectral images (TM 1986, ETM+ 2000 and OLI 2020) and to highlight their evolutions by analyzing the areas and the rates of change. The approach used combines image pre-processing, identification of land use unit classes, construction and execution of supervised classification by the maximum likelihood method and quantification of change. All of these treatments applied to the images, allowed us to obtain the land use maps in 1986, 2000 and 2020 with five land use classes (forest/gallery/swamp, plantation, mosaic/fallow/crops, dwellings/bare ground, and water yard). Analysis of the dynamics of the land use units from 1986 to 2020 shows a progressive trend in the area of the mosaic/crop/fallow (25.97%) and habitat/bare soil (10.51%) classes and a regressive trend in the forest/gallery/swamp (-5.82%), plantation (-0.13%) and water (-0.25%) classes. Quantification of change from 1986 to 2020 is assessed by an estimated rate of change (Tc) of -5.82% (forest/gallery/swamp); 1.38% (mosaic/fallow/crop); 2.79% (dwellings/bare ground); -0.13% (plantations) and -0.25% (watercourse). This evolution is due to the expansion of the housing/bare soil and the mosaic/fallow/crops areas. This is the result of the strong human pressure on the vegetation formations. These results constitute a decision-making tool for the sustainable management and urbanisation of the Plateau of Allada.

Author Keywords: Land use dynamics, change detection, supervised classification, maximum likelihood, progressive tendency, regressive tendency.


Abstract: (french)


L’objectif de cette étude est de cartographier les unités d’occupation du sol (OCS) du Plateau d’Allada à partir de la classification supervisée par la méthode de maximum de vraisemblance des images multi spectrales à multidate de Landsat (TM 1986, ETM+ 2000 et OLI 2020) et ressortir leurs évolutions en analysant les superficies et les taux de changement. L’approche utiliser combine le prétraitement des images, l’identification des classes d’unités d’occupation du sol, la construction et l’exécution de la classification supervisée par la méthode maximum de vraisemblance et la quantification du changement. L’ensemble de ses traitements appliqués aux images, ont permis d’obtenir les cartes d’occupation du sol en 1986, 2000 et 2020 avec cinq classes d’occupation du sol (forêts/galeries/marécage, plantation, mosaïque/jachères/cultures, habitations/sols nus, et cour eau). L’analyse de la dynamique des unités d’occupation du sol de 1986 à 2020 présente une tendance progressive des superficies des classes de mosaïques/cultures/Jachères de (25.97%) et habitats/sol nu (10.51%) et une tendance régressive des classes de forêt/galerie/marécage (-5.82%), plantations (-0.13%) et eau (-0.25%). La quantification du changement de 1986 à 2020 est évaluée par un taux de changement (Tc) estimé à -5.82% (forêt/galerie/marécage); 1.38% (mosaïque/jachères/cultures); 2.79% (habitations/sols nus); -0,13% (plantations) et -0.25% (cour d’eau). Cette évolution est due à l’expansion des zones habitations/sol nu, et la mosaïque/jachère/cultures. Ceci résulte de la forte pression humaine exercée sur les formations végétales. Ces résultats constituent un outil d’aide à la prise de décision, pour une gestion durable et l’urbanisation du plateau d’Allada.

Author Keywords: Dynamique occupation du sol, détection du changement, classification supervisée, maximum de vraisemblance, tendance progressive, tendance régressive.


How to Cite this Article


Kpoha Josiane Nadège, Akokponhoue Houngnigbo Bertrand, Orekan Vincent, and N’guessan Bi Vami Hermann, “Contribution of remote sensing and GIS to the mapping of land use units and its changes in the face of the flooding problem on the Plateau of Allada in Benin between 1986 and 2020,” International Journal of Innovation and Scientific Research, vol. 65, no. 2, pp. 171–183, March 2023.